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What’s the tool to monitor and assessall this?

Ecosystem approach:
optimal or healthy state as a goal for holistic management

Metaphor rather than quantitative theories

Good ecosystem health:
• self-maintaining, vigorous, resilient to externally imposed pressures,and able to sustain

services to humans.
• contains healthy organisms and populations, and adequate functional diversity and functional

response diversity.
• Interactions amongst ecosystem components, able to ameliorate pressure effects
• expected trophic levels are present and well interconnected.
• good spatial connectivity amongst subsystems.

D efinitions and open questions

<
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Issues in environmental monitoring (from spaceand not only)

in terms of:

- defining thresholds (i.e. models, historical data archives, expert estimates,…)

- monitoring strategies (i.e.methods used, frequency observations, locations, …)

- variables (i.e., OC products, processing levels,…)

- sensors (i.e., single vs. multi-sensor, satellite life-time, …)

- what to map (P90, anomalies, trends, K-means, clustering colors)

What we deal with and
what we do…



THURSDAY, JANUARY 21, 20214

Data-driven vs. Process-based approach

Data alone are insufficient for understanding and
predicting changes in ecosystem health

Find a synthesis among theory, strategy and observation
in order to optimize the understanding of a physical process
with an essentialnumber of observablesand/or indicators.
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Collecting for what?

Recognition = > Monitoring => Comprehension
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System vulnerability is assessed by extracting those effective processes that
reduce the complexity of the system (Paola and Leeder, 2011).
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Process-based approach to reduce complexity

• Quantitative modelling usually required simplification — sphericalcows — to
render complex problems tractable

• Envisioning ad hoc sampling strategies that might overcome the complexity of the
system (maximizing costs and significance of the data)
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The Human Microbiome: successstoriesand challenges
TheavanRossum(EMBL,Germany)

Successful stories

Microbial community Ocean health

…in terms of wrap-up indicator.

The consistent and complete collection and storage of associated metadata remains a
challenge. Despite this, a benefit of the meta-analysis of tens of thousands of samples is the
opportunity to better describe the healthy state of the human microbiome, which has been
revealed to contain much variability.

.
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Forests as complex adoptive systems
MariaJoséSanz(BasqueCentreforClimateChange,Spain)

Forest Ocean environment

…in terms of effective and efficient solutions.

Actions to mitigate climate change are rarely evaluated in relation to their impact on adaptation,
sustainable development goals, and trade-offs with food security. Some of the most promising
adaptation options for land and ecosystemsinclude mitigation options. […] This will require
to understand that they are complex systems that also respond to climate change
themselves.

.

Successful stories
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The soil and cognitive control
GraziaMasciandaro(CNR-IRET,Italy)

…in terms of ecosystem services and provisioning of products.

Soil is a complex system, which provides a wide range of ecosystem goods and services that
support ecosystem functioning and human well-being. In view of the remarkably complex
biological, chemical and physical constitution of soil, it is evident the necessity and urgency of
cross-disciplinary expertise for improved understanding of soil systemhealth and functioning.

Successful stories

Soil Ocean
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Characterizing integrated ecosystems:Understanding the complexity
via application of a process-basedstate space rather than a potential
CédricGaucherel(AMAPLaboratory,France)(withF.Pommereauand
C.Hély)

Successful stories

Physical system Ecological system

…in terms of process-based modeling.

New method that better reflects the properties of ecosystems,especially complex, historical non-
ergodic systems,to which physical concepts are not well suited.

The state space computed by these kinds of discrete ecosystemmodels provides a relevant concept
for a holistic understanding of the dynamics of an ecosystem and its above-mentioned
properties

.

(Tett et al., 2013)
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Human microbiome: success stories and challenges

Some slides courtesy of Peer Bork & colleagues

“Musing on the concept of Good Environmental Status: the
complexity of the status and the status of complexity”

Workshop Joint JPI-Oceans and Bluemed CSA
‘University Roma Tre’, Roma, Italy - 2nd-4th December 2020

Thea van Rossum, PhD
Computational biologist, microbiome

Lab of Prof. Dr. Peer Bork
Towards functional understanding of

biological systems

EMBL, Heidelberg

nature.com/collections/microbiota-milestone



Known for a long time that microbes are important for health

Two researchers working with the plague in Philippines, 1912.
Credit: Otis Historical Archives National Museum of Health and Medicine/Flickr, CC BY 2.0
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How to study microbes: until recently via growing them
…but 99% cannot be easily cultured, so only a few were studied individually

Petri dishes with nutrient cocktail…invented 1887

From toilet air From the hand of an 8 year old
3

Slide by Peer Bork



Now microbiome methods can take broad census in any environment

DNA Gene profiling (16S)
Metagenomics

RNA Metatranscriptomics

Protein Metaproteomics

Metabolites Metabolomics

Illumina, Inc.
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Microbiome health research started with profiling

Who is there?
What can they do?

What are they doing?
Who is doing what?

Illumina, Inc.
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Who is there?
What can they do?

What are they doing?
Who is doing what?
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measure and improve

human health?
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Microbiome health research started with profiling

Who is there?
What can they do?

What are they doing?
Who is doing what?

How can we use them to
measure and improve

human health?
Illumina, Inc. What does a healthy human

microbiome look like?
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What does the human microbiome look like?

Qin et al, Nature 464(2010)59

With metagenomics we see ~250 species/person

Li et al, Nat.Biotech. 32(2014)834

More bacterial than human cells, biomass of ~1.5kg (brain 1.3kg)
Content: mostly bacteria, >1000 species per person, exact number unclear

Coelho et al., in revision

Danes and Spaniards

Each of us carries a lot of unique genes (or rare species)

8

3 continents

Kids, diverse locations,
more diseases

3 million genes, 4GB per sample

10 million genes, 5GB per sample

56 million genes, 10GB per sample

Common ones found but still discovering rare genes & species



We know roughly what a ‘normal’ gut microbiome looks like

9

Higher abundance of different bacterial
groups create ”enterotypes”

Marisa Metzger
Costea et al. Nature Microbiol. 3(2018)8

Enterotypes are fuzzy and
associated with diet and disease

Enterotype concept from Arumugam et al. Nature 473(2011)174

Lots of biological variation but some general patterns



The human gut
microbiome varies across
people

Schmidt, Raes# and Bork#,
Cell 172(2018)1298
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“normal” = healthy?

11

“not normal” = unhealthy?



DiseaseDysbiosis

Dysbiosis is an unhealthy microbial imbalance

12

“Imbalance”
Divergence from “normal”

Population Individual
(time)



Dysbiosis definition can be circular

13

DiseaseDysbiosis

Is dysbiosis a cause or an effect?

Measuring general “health” is difficult



Some diseases have
microbial signals

➢ Define health contextually
as lack of specific condition
or disease

Schmidt, Raes# and Bork#,
Cell 172(2018)1298 14



How can we use microbiome to
measure and improve

human health?

Illumina, Inc.

15



Metagenome-wide association studies (MWAS) link
gut microbiome to a multitude of diseases

Crohn’s
disease•Gut 2006

Arthritis•Nat. Rev.
Rheumatology 2011

Autism• J. Med. Microbiol.
2005

Multiple
Sclerosis•Nature 2011

Parkinson
Disease

•Eur. J. Neurosci.
2009

Obesity •Nature 2006

Diabetes •Nature (2012)

NASH •Nature 2012

Athero-
sclerosis •Nature 2011

Colo-
rectal
cancer

•Genome Res. 2012

Neurological disorders

Metabolic diseases

Cardiovascular diseases

Cancer

Inflammatory diseases

Indication areas

Association,
not causation

16
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Colon cancer: microbiome provides early stage detection
and complementarity to existing test

18 Zeller*, Tap*, Voigt* et al, Mol.Sys.Biol. 10(2014)766 patent granted in 2018

Bacterial marker species
associated with colon cancer

→ PCR test

French cohort (N=156) with external validation on a German cohort reveals 20+ marker species



Colon cancer: microbiome provides early stage detection
and complementarity to existing test

19 Zeller*, Tap*, Voigt* et al, Mol.Sys.Biol. 10(2014)766 patent granted in 2018

French cohort (N=156) with external validation on a German cohort reveals 20+ marker species

What if all CRC patients have inflammation and we developed an unspecific inflammation test?
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Wirbel et al., 2019 Nature Medicine
20

Meta-analysis identifies a specific, global microbial CRC signature



Meta-studies possible because of standardisation and centralisation
but metadata integration is challenging

21

Lots of technical variation as standards are still emerging

Voigt et al., Genome Biol. 16(2015)73
Costea et al., Nature Biotech 35(2017)1069

Different protocols but also same protocol in
in different labs vary considerably

Benefits of combining cohorts:
• Statistical power
• Robust to study population

(geography, age, other diseases, diet, etc)

Requires:
• Standardisation

• Sharing data
• Sharing metadata

• Experimental
• Analytical
• Positive controls



Forslund, Hildebrand et al.,
Nature 228(2015)262

BUT a popular diabetes treatment is a major confounder

Associations can be unspecfic, confounded or indirect

Qin et al., Nature 2012, AUC 0.81 (Chinese cohort) Karlsson et al., Nature 2013 AUC 0.83 (Swedish cohort)

“The gut microbiome is associated with type 2 diabetes”

(with EU Metahit consortium)

22

Treatment drug
(Metformin)

DiabetesMicrobiome



Microbial biomarkers need to take co-variation into account

Biomarkers for diagnosis
have to be sensitive and
(disease-) specific

Schmidt, Raes# and Bork#, Cell 172(2018)1298

Medication has effect on
microbiome and vice versa

23



Maier, Pruteanu, Kuhn et al., Nature 555(2018)623
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With Typas, Patil and Zeller groups at EMBL

Many “human targeted” medicinal drugs change our gut microbiome

1197 marketed drugs

Antibacterial

Antifungal and antiviral

Human-targeted

>24% of human-targeted drugs
deplete at least one gut

bacterium, leading to side effects

Investigated with in vitro high throughput experiments

drug-bug screen for direct interactions:
1200 medicinal drugs vs

40 representative gut strains

24

Implications for
personalised medicine



How can we use microbiome to
measure and improve

human health?

Illumina, Inc.
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Microbial therapy:
Fecal Microbiota Transplantation (FMT)

• Transfer of stool from a healthy donor to patient
• Positive effects reported in GI and non-GI diseases

• Over 90% success in treating Clostridium difficile infection

• Not so straight forward in other diseases

• Mechanism is still unknown

26



Microbial therapy:
Probiotics work in some cases

Panigrahi et al., Nature 548(2017)402
DANISH SIDDIQUI / REUTERS

Success: probiotic treatment for rural infants
4000 infants → 40% reduction in sepsis rate

No benefit in many case-control studies:
- Antibiotic-associated diarrhoea & Clostridium

difficile diarrhoea (Allen et al. Lancet. 2013)
- Eczema in infants (Allen et al. Arch Dis Child. 2014)
- Necrotising enterocolitis & late-onset sepis in very

preterm infants (Costeloe et al. Lancet. 2015)
- Antibiotic recovery (Suez et al. 2018 Cell)
- etc.

Treat 27 infants (1$ each) to prevent 1 case of sepsis

➢ Large sample sizes required
➢ Strain choice matters

27



Microbiome supports broad understanding, succeeds with specificity

• Microbiome methods enable broad census of microbial life and activity

• Difficult to define “healthy microbiome”
• “Dysbiosis” can be crutch
• Specific definitions of “unhealthiness” are actionable

• Example successes:
• Diagnostics (bioindicators) of specific conditions
• Microbial-based treatment -- even if mechanism uncertain

• Important for success
• Large sample sizes & meta-studies
• Randomised controlled trials
• Next: mechanistic insights via in vitro experiments

28



www.bork.embl.de
IHMC, IHMS, METAHIT (EU), METACARDIS (EU), I. Sobhani, (UPEC, F), M. von Knebel, H.
Brenner, N. Ulrich (HD), N.Segata (Univ. Trento); K. Korpela (Univ. Helsinki), Sofia Forslund
(now MDC), Genecore facility (EMBL), N. Typas, K. Patil, G. Zeller (EMBL) ... and many more

Thanks also to group alumni and collaborators

@theavanrossum @BorkLab
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Ece Cevirgen, Postdoctoral Fellow
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Thea Van Rossum, Computational Biologist
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Yan Ping Yuan, Bioinformatics Lab Manager
Josipa Zimmermann, Planetary Biology Program Manager
Maria Zimmermann, Postdoctoral Fellow



o Forests as complex adaptive systems
o M.J. Sanz, Basque Centre for Climate Change, Spain



What we are at?
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Forest are complex systems

But we oversimplify its role in the context of the climate change



Simplified forest fluxes….We simplified to make policy decisions

CLUA2017



Large expectations on NBS from Forest
Restoration is now days a global priority!

Bonn Challenge



Countries are seriously considering at this stage their potential to contribute to
mitigation of Climate Change in the context of their NDCs, and the Paris Agreement
endorsed this process.

Are they an opportunity towards the future…

Grassi et al 2017

LULUCFexpected to play a role



Land Use role:
large discrepanciesamong and between models and with GHGinv?
Comparisonof the global net anthropogenic land-related CO2
fluxes estimated by AR5 / countries’ GHGIs

WGI/III

WGI/III
Updated

countries’
GHGIs

The gap between the updated estimates is about 4
GtCO2yr−1for the period 2005–2014.

Source: Grassiet al 2018

Comparisonof different models on their proyections for the
increaseof croplands2012-2050

The range goes from -5% to +30% .



Mitigating climate through forest – NBS

7

Griscom et al 2017 (PNAS)

But huge uncertainty

Are top down numbers right?

co-benefits?

Large expectations!
20 to 30% of the gap
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Land Use role: Are potentials realistically calculated?
For example Reforestation

XEFAD

Griscom et al 2017 (PNAS)

Forest definition: Crown cover trehshold 25% / EFsingleone – correspondingto a semitropical forest for all Spain

GPPavg 2005-12 (gm-2 a-1)



Are the foreseen opportunities realistic?



SECENARIOS

Long-term water balance

Reforestation becomes challenging!



Forest are vulnerable…



Mountain pine beetle and forest carbon feedback to climate change - CANADA

o Cumulative impact of the beetle
out-break in the affected region
during 2000–2020 will be 270 Mt
C over 374,000 km2 (Kurtz el al
2008)

o In the worst year, the impacts
resulting from the beetle outbreak
in British Columbia were
equivalent to 75% of the average
annual direct forest fire emissions
from all of Canada during 1959–
1999



Response of forest insect attacks in a climate change context

The main identified mechanisms of positive
forest insect responses (i.e. more damage) to
climate change are:

o higher number of generations per year and
higher survival under warmer
temperatures,

o lower tree resistance to insect attack under
more severe droughts,

o higher amount of breeding substrate for
bark beetles following storms, and

o changes in substrate quality for defoliators
due to elevated CO2

Jactel et al 2019



Recent case of a disease (Dothistroma pini) in north Spain

Pinus radiata
Monoculture (50% forest área)

Guipúzcoa (Spain)- January 2018 about
1.100 ha affected, six months later 16.000
of the 65.000 ha of pine forest in the
province affected (mainly monocultures of
P. radiata

During summer 2018 also detected in
Vizcayaand Alava provinces. It will require
extraction of the wood in the coming
months



Australia, on January2, 2020. NASAsatellite image courtesy Worldview website.

FIRES - Australia, 2019-20



Plant-soil interactions key to understand climate-change driven tree-
mortality effects on ecosystem functioning/services

Tree decline and mortality exacerbates how climate-change
affects soil biogeochemical cycling and soil microbial
communities

Daniel García-Angulo, A-M Hereş,Manuel Fernández-López,Oliver Flores,MJ
Sanz,A Rey, FValladares, JCuriel Yuste, 2020, Soil Biology and Biochemistry

Cascading effects associated with climate-change-induced
tree mortality results in alterations of soil CO2 emissions

JCuriel Yuste, D Flores-Rentería, D García-Angulo, A-M Hereş, CBragă, A-M
Petritan, IC Petritan. 2019, Soil Biology and Biochemistry
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Diversity beyond number of plant species: structure and
composition of the fungal community

Estimating abundance of ectomycorrhizal abundance

Fungal abundance is sensitive to water-availability
in Beach forest



Past management affects affect response to climate change

We can´t conserve forest without learning from the past (traditional usesof the forests)



Tree species have different responses…

J. thurifera may benefit
from the rises in CO2
concentrations due to
their capacity to increase
C assimilation in spite of
intensifying aridity

Forest composition in the M editerranean region might be altered due to both
differential physiological responses to climatic changes and contrasting capacities to
withstand stressful conditions among coexisting tree species.
Granada et al 2014



Forest cover and
composition
changes
contribute also to
Climate Change

Naudts et al 2016



Regional changes in air surface temperature due to losses in forest cover
between 2003 and 2012

Changesin mean annual air temperature (A) and diurnal variations (C) due to forest losses.
Symbol size indicates the magnitude of forest cover losseswhile the color specifies the average temperature sensitivity to total deforestation



Integration of knowledge

Stand to Region …. to Global (process and knowledge driven)



Bivariate map of forest biodiversity significanceand intactness

Hill et al 2019. Front. For. Glob. Change,29

Biodiversity is more than forest species….

Mishra et al 2019

Functional relations are key…



Rodriguez-Una,M oreno-Mateos. In preparation.

84 %

After 125 years forests are still different by 16%
104 chronosequences

Moreno-Mateos et al



Sequencing the
Brazil nut genome
in Pre-Columbian
settlements

Amazonian crops

1. What regions have
changed since the
release from
domestication?

2. What functions relate to
those regions?

3. Has the species
recovered its adaptive
potential?

Brazil nut tree

More positive fungi-plant
interactions in undisturbed sites

Symbionts

Decomposers

Pathogens

Norse agriculture in Greenland

Forests may require more
than 140 years to recover

Rodríguez-Uña et al. JAppl Ecol (submitted)

Species richness and diversity
recovered but not species
identity.

Ectomycorrhizal communities
inside both mines are still
different to outside.

Former mine in Navarra





Mediterranean forest

Multiple forest
services by 2100
for two RCPs

TUESDAY, JANUARY 12, 202127

Relative ecosystem service
provision taking as reference the
BAU.

Values reflect the ratio between
the total accumulated service
provision by 2100 under each
scenario and those of the BAU.

The circle with black outline
indicates equal service provision
to the BAU = 1

3 management scenarios
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Adaptive management is one of the most important challenges for forestry in the
decades to come, reflecting the intensity of local climate and site change and its uncertainties

Bolte et al 2009

linear

lag effect

acclimatization

overshoot

homeoestasis

tipping point

Different temporal patterns of
ecosystem responses to climate change

(after Rustad 2006)



Where we need to go?

TUESDAY, JANUARY 12, 202129

Forest are complex systems

We need to take advantage of the complexity…

• Many forest ecosystems have been shaped
by human influence and tree species
composition and stand structure have been
managed with hindsight to well-defined societal
expectations.

• We can satisfy many expected ecosystem
services emerging from forests, but still
need to meet ends when balancing the trade-
off between the provision of restoring
ecosystems functionalities (including
adaptation needs!), public goods and
commercial interests is required.

Biodiversity, climate, water, forest products…
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The Soil and Cognitive Control
G. Masciandaro, CNR-IRET,Italy

JPI OCEANS
Musing on the Concept of Good Environmental Status: the complexity of the

status & the status of complexity

Joint Workshop 2-4 December 2020



Soil is a complex ecosystem made up
of aggregates,organic matter,
microscopic and macroscopic
organisms

A spoonful of healthy soil contains
many millions of different
microorganismswhich perform vital
functions, such as storing nutrients
and making them available to plants
giving the soil the function of ferti l ity

SOIL COMPLEXITY

>1 billion

>100 millions

>1 million

>100 thousand

Bacteria

Actinomycetes

Fungi

Microalgae



Diversity

C cycle and
restoration

Climate change and
adaptation

Functionality Activity

MINERAL
AND

ORGANIC COLLOIDES

Complexity

A central concept in complex systems is that the dynamics of the system “emerges”
from a relatively simple set of interactions between the components

The necessity and urgency of cross-disciplinary expertise for the understanding of soil system
functioning is evident.

The multidisciplinary approach is necessary in all the sciencesconcerning complex ecosystems ,
like soil and water

SOIL COMPLEXITY



Hou et al., 2020

Cross-disciplinary cognitive approach



Man's perception of soil evolved in relation to his
cognitive and technological development from PERCEPTIONto

LEARNING:
1) the perception of soil as a source of products necessaryfor food

(agricultural conception) to
2) the recognition of establishing a balance in the coexistence

between man and soil to know the limits of the soil as a non-
renewable resource (environmental conception).

Man has two attitudes:

1) the man-farmer behaves like a
parasite towards the soil
determining degradation and
fertility loss

2) the second attitude is aimed at
caring for the soil and maintaining
its fertility: it is the symbiosis of
man and soil

COGNITIVE APPROACH:MAN-SOIL RELATIONSHIP

Soil health may be lost quickly but it is slow to be restored



PERCEPTIONOF SOIL AS A LIVING SYSTEM

Soil under our feet is a living system: home to many fascinating plants, animals,
microrganisms; habitat for flourishing biodiversity; provides us with food and clean
water

However, soils are fragile and they can take thousands of years to form but can be
destroyed in hours!

SIMPLYPUT, HEALTHY LIVING SOILSKEEPUS , and the WORLD AROUND US, ALIVE and HEALTHY

I t is important to know the limits
beyond which the soil can be
destroyed. Even where soil degrades
more slowly, the effects are severe
and difficult to reverse

This means that we need to take care
of soils. Soil degradation is largely
driven by how we live

LEARNING TO KNOW THESOIL



Keep soil healthy and alive,
Protect soil biodiversity



Healthy Soils for Healthy Life

Healthy soil maintains a
certain level of structural and
functional integrity in a
changing environment
(physical, chemical and
biological properties)

This implies addressing
resistance and resilience of
the soil to disturbance and
stress



Soil Quality and Health
Antropocentric definit ions

• “the capacity of a living soil to function, within natural or managed ecosystem
boundaries, to sustain plant and animal productivity,maintain or enhance
water and air quality, and promote plant and animal health” (Doran, 2002)

• “a healthy agricultural soil is one that is capable of supporting the production
of food and fibre, to a level and with a quality sufficient to meet human
requirements, together with continued delivery of other ecosystemservices
that are essential for maintenance of the quality of life for humans and the
conservation of biodiversity” (Kibblewhite et al., 2008)

• “the continued capacity of soil to function as a vital livingecosystemthat
sustainsplants, animals and humans” (USDA. Natural Resources Conservation
Service. Healthy Soil for Life, 2018)

• ”the continued capacity of soils to support ecosystemservices”(Soil Mission
2020, in line with the UN SustainableDevelopment Goals and the EU Green
Deal)



SOIL ECOSYSTEM SERVICES

The assessmentof Soil Health becomes connected to the evalutation of the ecosystem services
provided by soils

Conceptual presentation of linkages between soil functions, soil-based ecosystemservicesand soil threats
developed during the iSQAPERworkshop at FiBL,Frick (October 2015).



Ecosystem services or services to ecosystems?

(Comberti et al., 2015)





Physicalproperties
Expressedby Structure, Texture,
Infiltration, Bulk density, Water
holding capacity, Resistanceto

erosion

Agro-chemical properties
expressedby plant development
and soil chemical-nutritional

parameters: pH, Salinity
Nutrient availability, CEC,

OrganicMatter

Biological properties
expressed by

Microbial diversity
(Metagenomics)

Microbial functions(enzymatic
activities, microbial activity,

metranscriptomics,
metaproteomics,
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SOIL HEALTH INDICATORS

Highly sensitive to management practices and
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Diversity FunctionsMolecular biology improved the understanding of the
microbial communities. Currently there is a major emphasis
on the application of "omics" approachesto determine the
identities and functions of microbes inhabiting different
environments.



The current molecular toolbox encompasses a range of DNA-based technologies
and new methods for the study of RNA and proteins extracted from soil samples

Genomics, Transcriptomics,Proteomics and Metabolomics

BIOINDICATORS AT ECOSYSTEMLEVEL

Depolymerization

Organic
matter

Soluble
substrate

Microbial
biomass

Assimilation

Enzyme
Pool

Enzyme Production

Enzyme
Turnover

Transcriptomics (RNA) of
enzyme-coding genes

Proteomics

Metabolomics



➢Decomposition of the organic substrates

➢Fertility and productivity of soil

➢Soil response to ecological and functional recovery practices after natural

or human stresses (resilience)

BIOINDICATORS AT ECOSYSTEMLEVEL

•Microbial biomassquantity and biodiversity
•Microbial biomass activity: 1) general parameters (ATP,CO2,Dehydrogenase)

2) specificparameters (hydrolitic enzymes)

Role of Soil Enzymes

Any alteration in the enzyme/protein structures might have consequences for the living
organisms soil would remain lifeless without enzymes.



Minimum Data Set

- Identify specific parameters
- Measure them over time and compare to
reference conditions or judge against
common standards

Methods for capturing information

- visual assessments in field;
- soil sampling with laboratory analysis;
- remote sensing;
- modelling, crowdsourcing and citizen science

Trend Changes

Improvements to (or degradation of)
soil can perhaps best be visualized as
trend changesthat point in a
positive (or negative) general
direction over the years.

STEPSTO MONITOR SOIL HEALTH



Report of the Mission Board for Soil Health and Food 2020

“By 2030, at least 75% of soils in each EUMember State are healthy, or show a
significant improvement towards meeting accepted thresholds of indicators, to

support ecosystem services “

Efficient soil Health Indicators
1) Presence of soil pollutants, excessnutrients and salts
2) Soil organic carbon stock
3) Soil structure including soil bulk density and absence of soil
sealing and erosion
4) Soil biodiversity
5) Soil nutrients and acidity (pH)
6) Vegetation cover
7) Landscapeheterogeneity
8) Forest cover

(Soil Mission 2020)

plot / f ie ld level

Landscape level

Measurements are soil-specificshowing different values for different soil types
according to their land use



EU MANAGEMENT ACTIONS FOR SOILPROTECTION

• Towards a Thematic Strategy for Soil Protection (COM(2002)179)
• Thematic Strategy for Soil Protection (COM(2006)231)

• Proposal for Soil Framework Directive (COM(2006) 232)

The proposal was
withdraw in 2014 because

some Member States
(Germany, France, The

Netherlands, United Kingdom,
Austria) did not accept it
due to the different and
specific need of each

Member State

The overall objective was to protect soil and use it in a
sustainable way on the basis of the following guiding
principles:
• Preventing further degradation of soil and preserving its
functions;
• Restoringdegraded soil to a level that enables at least its
current or intended use, which entails considering the cost
implications of restoration



COMMON AGRICULTURALPOLICY(CAP) ISONE OF THEMAIN
EU LEGISLATION RELATING TO SOIL PROTECTION

CAPobjective and measures related to ENVIRONMENTAND SOIL
aim to prevent and mitigate soil degradation processesin agricultural areas

through a closemonitoring to study soil conditions in the EU

CAPpromoted Soil Protection particularly increasing or mainataning SOM and
Soil Biodiversity in agricultural lands.

It exists since 1962 to address good quality, safe and affordable food products while supporting
European farmers. Recently, CAP(Post-2020 CAP,COM(2018) introduced measures directly

linked to Soil Protection, underlining the need of implementing sustainable soil management
within the future agricultural policy in the EU (possible entry into force 2021)



In terms of policy, the SoilMission will be a main tool for achieving the objectives of the UN
SDGsand the EUGreen Deal, both of which aim to reduce biodiversity loss and pollution. Key
elements are restoration and preservation of Heathy Soils



SOILHEALTHMISSION AND OTHERMISSIONS



Soil cognitive control should be based on a paradigm shift: from the
traditional more static to a dynamic approach in which the soil is no more
considered a stock to be exploited, but as a precious living organism to be
cared for

“Caring for Soil is Caring for Life” is the title proposed for the Soil Health
and Food Mission

Accurate and sensitive indicators, such as soil biodiversity, should be
studied by traditional and innovative techniques that will offer new
opportunities to understand the “Soil Health”

Multidisciplinary new research approaches are therefore essential to
filling gaps in knowledge perceived in a complex soil ecosystem

CONCLUSIONS
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Ecosystemsarecomplexobjects,simultaneouslycombining biotic, abiotic, andhumancomponentsandprocesses.Ecologistsstill
struggletounderstandecosystems,andonemainmethodforachieving anunderstandingconsistsin computingpotential surfaces
basedonphysicaldynamical systems.We arguein this conceptualpaperthat thefoundationsof thisanalogybetweenphysicaland
ecological systemsare inappropriate andaimtoproposeanewmethodthatbetterreflectstheproperties ofecosystems,especially
complex,historical nonergodic systems,to which physical concepts arenotwell suited.As analternative proposition, wehave
developed rigorous possibilistic, process-basedmodels inspired by the discrete-eventsystemsfound in computer science and
produced a panel of outputs and tools to analyze the systemdynamics under examination. Thestate spacecomputedby these
kindsof discreteecosystemmodelsprovidesarelevant concept for aholistic understandingof thedynamics ofanecosystemand
its abovementionedproperties. Takingasaspecificexampleanecosystemsimplified to its processinteraction network, weshow
here how to proceedand why a statespace is more appropriate than a corresponding potential surface.

1. Introduction
Most ecologistswould admit that ecosystemsare complex,
although somemight appear simple. Ecosystems appear to
form emergent structures (e.g., [1, 2]), exhibit nonlinear
properties (e.g., [3, 4]), and be clearly out of equilibrium
(e.g., [5, 6]). Moreover, the fact thatmostecosystemstoday
strongly interact with society and contain several human
groupsheightensthis feeling ofcomplexity [7, 8]. Yet, most
studies focus on just some components of the ecosystem,
eitherbiotic (e.g., speciescommunity), abiotic (e.g., climate,
element cycles), or anthropic (ecosystem services), and a
definitive demonstrationof integratedecosystemcomplexity
is still lacking. In addition, most analyses focus on com-
plexity at a specific time, often concentrating on patterns
rather than on long-termdynamics [1,9]. In thisconceptual
paper,weproposeadetailedmethodologyfor thelong-term
study of ecosystem dynamics and for qualifying their
complexity using process-basedmodels.

Ecosystemcomplexity isderivedfirstandforemostfrom
thecombination of biotic, abiotic, andhuman components
which also form a tangled webof continuous interactions
[10–12]. Some socioecological systemsseem quite simple,
with few components and few processes, but these cases
remain scarce.Theoretical ecologistswith a true interest in
the whole (socio)ecosystem, not just somepartsof it, have
spent decadesdebating ecosystemdynamics and their sta-
bility or resilience[3, 13].Whether apotentialfunctionor a
resilience surface [14–17], synthetic andconceptual models
should beable to fit any specific trajectory observed in the
ecosystemunder study. The recent nature of ecology as a
discipline and mostly partial and short-termobservations
provide us with a limited view of ecosystems.As a result,
suchmodelsoftenfocusonshort-termdynamicsandmainly
on pattern analyses [9, 18, 19]. Models of complexity in
ecology thus remain phenomenological. For this reason,
evenpartially validated process-basedmodelsofecosystems
offer a promising opportunity to produce understandable,
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robust long-termdynamics. Here, we intend to review the
mainstreammodelsof ecosystemdynamics, to demonstrate
someof their limitations, andfinally, to provide a process-
based methodology that will hopefully bypass such
limitations.

When studying or managing an ecosystem, be it tem-
perateor tropical, terrestrial or aquatic,natural or anthropic,
asuggestedpreliminary stepisan exhaustiveunderstanding
of itsoveralldynamics. Practically speaking,ecologiststoday
investigate whether or not a specific ecosystemstudied is
stable[3,4], resilient [2,20],andmoreoverhowfar fromany
tipping pointsor catastrophic shifts it lies [21–23]. Physics
has long provided powerful tools for theseobjectives with
regard to physical systems. For example, physical models
oftenprovide ordinary differential equation(ODE) systems
and summarize the most probable dynamics (and sharp
changes) into phasespacesandpotential functions [24,25].
Such synthesesthen enableconfident predictions of future
system states, to prevent unwanted states and advise on
expected states.

Despite recent attempts, such synthetic models for
ecosystemsare still lacking. Some theoretical models have
been proposed [26–29], but they rarely fit and accurately
calibrate observations, or if so, rarely studymore than one
state variable (e.g., biomassand/or annual rainfall). In ad-
dition, such models are probabilistic in essence,whereas
possibilistic modelswould affordexhaustive exploration of
complex (eco)system dynamics. Here, our first and most
important objective is to provide ecologists with a new
conceptual framework for achieving this goal of exhaustive
computation of any ecosystemdynamics [30, 31], and to
simultaneously illustrate the approach in a complex case
study. Moreover, the mainstream models used today in
ecosystemecology still suffer fromseveral limitations [32].
Our second objective is to list and debate these chief
limitations.

For thispurpose,werecentlydevelopedanoriginal type
ofmodels[18,30],basedonthediscreteeventandqualitative
systemscommonly used in theoretical computer sciences
[33–35]. Here, wewill illustrate the approachwith a qual-
itative Petri netin thecaseof aninsect(termite) colony [36],
which is presumed to mimic an ecosystem undergoing
abrupt qualitative change, and potentially experiencing
strong long-term disturbances. We will show how the
qualitative statespace(sometimescalled the reachability or
labeled transition space) of the modeled insect colony
provides a relevant synthesis of this ecosystems̓dynamics.
Finally, wewill analyzethis statespacetoverify that it isnot
subject to the same limitations as identified in other eco-
logical models,and to suggestfuture directions.

2.State SpaceofaQualitative Ecosystem
Here, we proposean original model intended to represent
theoverall dynamicsof any complex(socio) ecosystem.The
proposition statesthat it is possible to exhaustively capture
overall ecosystem behavior on the basis of a qualitative,
discrete, and integrateddescription of its interactions [18].
Theinteractions within agivenecosystemareall the relevant

processes involved in the system dynamics, hence the
process-basedmodel.Thiskind ofdiscretemodelhasalready
proved useful, and interested readers may refer to papers
describingthemathematical detailsof themethodandsome
applications [30, 37,38]. In the presentstudy,we illustrate
such an approach with the specific case of a simplified
theoretical insect colony. This termite colony is assumedto
mimic a typical ecosystemcomprising biotic, abiotic, and
anthropogenic-like(the farming termites) components[36],
as well as all their associated (i.e., bioecological, physico-
chemical, andsocioeconomic) interactions.Theoutput from
themodelconsists in adiscrete qualitative statespaceof the
ecosystem, grouping all the states that the ecosystemmay
potentially reach from an initial state and thus all its
trajectories.

We chose to model eusocial insect colonies for the
reasonsthat they experiencedrastic change (tipping points,
TPs) over time,butanyotherecosystem-likemodelsmaybe
used(Figure 1(a)). We choseto work on Macrotermitinae
termites [36] which, like someant species, construct large
colonies (up to millions of inhabitants), [39] sometimes
considered as super-organismswith complex functioning.
These termites cultivate fungi in special chambers, build
aerial structures(called mounds)to improve air circulation,
and divide their nests into a royal chamber, funguscham-
bers, andeggrooms (Figure 1(a)). Given theability of this
eusocial species todevelopfood production, termitesmight
also be considered as mimicking humans (farmers) in
agrosystems.

One way of conceptualizing the ecosystemunder in-
vestigation is to represent it as a graph (i.e., network) of
components connected by processes, the interaction net-
work,whatever the interactions (Figure 1(b)). Themodelis
fully qualitative (Boolean) and allows components to be
presentor absentonly. Theresulting ecosystemgraphis then
manipulatedusingarigorousmodelbasedonadiscretePetri
net to formalize any change in the topology of this graph
(i.e., the neighboring relationships between present com-
ponents).Developed in computerscience[31,35], Petri nets
are commonly used in biology (e.g., [40, 41]) and are
powerful tools for rigorous formalization of changes in
network topologiesoccurring duringsystemdynamics.Such
Petri nets are radically different from traditional ecological
models basedon ODE equations (e.g., [2, 4]) in that they
deal with topological changes in interactions during the
simulation rather thandynamicscarried byafixedtopology.
Our approachmight be closer in spirit to other attempts,
suchasRichard Levins̓ “loop analysis” dedicatedtoo linear
systemsand its most recent versions of qualitative models
[42].

Discrete-event models provide state spaceoutputs that
can be readily analyzed to highlight relatively stable (or
resilient) dynamics, tipping points, and any other specific
trajectories. Such state spaces show similarities with the
state-and-transition models that have proved useful in
modeling ecological succession [43], except that our state
spaces are deduced from predefined processes instead of
beingdirectly drawnfromobservations.Hence,suchmodels
are possibilistic models as they exhaustively explore the

2 Complexity



possible dynamics of the (eco) system,and differ strongly
from traditional probabilistic modelsin ecology [17,44]. It
appears crucial to identify all possible trajectories to un-
derstand the overall ecosystemdynamics, rather than fo-
cusing on the mostprobable trajectories.

In this kind of framework, any ecosystemcan be rep-
resentedasagraph, in which every material componentof
theecosystem(e.g.,atermitepopulation stage,fungi,air, and
water) is represented by a node,with two Boolean states:
“present” (the component is functionally present in the
systemanditmayimpactothercomponents,alsodenotedas
“+”orOn) or “absent” (functionally absentfromthesystem
or “−” orOff). So,any stateofthesystemisdefinedbytheset
of “+” and “−” nodes(Figure 1(b)). Any physicochemical,
bioecological, and/or possibly socioeconomic process is
translatedinto aPetri net rule,whichdescribesthecondition
to be fulfilled, and the realization to beexecuted in sucha
case.Since the rules modify node states, the entire system
shifts from one state to another through the discrete suc-
cessiveapplication of rules[30]. Rulesprogressivelyproduce
the state space,which provides the set of all system states
reachable from the initial state and by the defined rules
(Figure 2). This is easily translated and computedby any
Petri net engine [35, 45].

The Petri net of the termite colony provides a highly
instructive state space [30]. The termite modeling reaches
only 109states(of 212possiblestates,approx.2%), sowecan
drawtheexhaustivestatespacetovisualize it (Figure 2). For
larger systems,analysis canbeperformedautomatically and
without drawing the statespace[37]. Thestate spacegraph
displayed here is composedof several (colored) structures,

which we will further describe and interpret in ecological
terms: the initial state (numbered 0, and representedby a
hexagon, Figure 2-A), two topological structures usually
called strongly connected components (SCCs, definedasa
setofsystemstatesin which everystatemaybereachedfrom
anyotherstateof theSCC, Figure2-BandB′), andanumber
ofdecisivepaths(e.g., irreversible ecosystemtrajectoriesand
tipping points, Figure 2-C), ultimately leading upward to
basinsandtheir associateddeadlocks (states fromwhich no
otherstate is reachable,Figure 2-DandD′, squares).Hence,
the state spaceprovides a convenient, precise summary of
the systems̓ behavior, its dynamic features, and all its
possiblequalitative trajectories.

From this statespace, it is possibleto computeamerged
state spaceautomatically aggregating all the states of the
topological structuresmentioned previously (Figure 3(a)).
In this merged space, the SCC properties conveniently
capture the ecosystems̓ structural stabilities, that is, the
number of states and the trajectories that qualitatively
connect them (e.g., Figure 2-B). Tipping points are also
visible as the successive rules (Figure 2-C and 3(a)-C)
shiftingthesystemfromstructural stabilities(e.g.,Bor B′) to
deadlocks(e.g., D or D′), heremeticulously identified and
listed [30]. Other possible features (e.g., basins connecting
the previous features) and ecosystemcollapses (deadlocks)
mayalsobecomputedanddisplayed onthesamestatespace.
Such topological analysis is usually accomplished on state
spaceswith asmany asmillions of states, in more complex
and/or realistic ecosystemmodels [37, 38].

From this merged state space, we can then compute a
potential-likesurface(Figure 3(b)), referredtohereinafteras

Royal cell

Nurserygalleries

Fungusgardens

Chimney

Ventilation shaft

Nest

Mound

Soil

(a)

Structure

Inhabitants

Environment

Competitors

Resources

Ec Fg

Ac

Rp

Sd
Wd

Wk

Md

Ai

At

Te

Sl

(b)

Figure 1:Graphic of atermitecolony (a) andits simplifiedinteractionnetwork(b). Termitesmodify their environmentandbuild amound
with various chamberstohost thecolony (a). Theoriginal ecosystemgraphis composedof12nodes(Table1) with fivecolors representing
their different natures (b, left). Their 15 associatedinteractions (i.e., processes,Table 2) are showndirectionally (b) from component
conditions to realizations.
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the computedpotential surfaceto distinguish it from other
traditional surfaces used in ecology and elsewhere
[14, 17, 25]. While stabilities may be representedby wells
(e.g.,Figure3(b)-B), tippingpointsarerepresentedby ridges
connecting thesewells (e.g., Figure 3(b)-C), and deadlock
states or setsof states are represented by assigning them a
virtually infinite depth on the computedpotential surface
(e.g., Figure 3(b)-D), sothat thesystemcanno longerescape
fromthem.For thispurpose,welinkedthewidth,depth,and
location of each topological feature with the number of
states, the number of trajectory steps, and the path con-
nections of each feature. This representation is intended to
consider different components of resilience, namely, lati-
tude, resistance, and precariousness [17]. For example,
structural stability B′ involves 20states,with amaximumof
threestepsrequired to leave it, and is irreversibly connected
toB (Figure 4(a)). In thisway,webuilt asurfacethatappears
comparableto the traditional potential-likesurfaces:yet,we
highlight in the next section how different it is, once
interpreted on the basis of the concepts supporting the
qualitative discrete-eventmodelsusedfor this computation.

Thestatespaceconceptprovides aneasyway to identify
structural stabilities, tippingpoints,andhysteresis.We stress
thatsuchtopological featuresdonotcorrespondperfectly to

the so-called dynamics (i.e., with these names) in ODE
models, as the system here shifts sharply from one set of
discretequalitative statesto other discretequalitative states
and could theoretically stay indefinitely in each of them.
When the system remains stuck in a specific structural
stability (e.g., B andB′ in Figure 2), all the statesof sucha
stability areby definition connectedthrough specificpaths.
Themodeled ecosystemshifts from one state to the others
through differentiated trajectories and then potentially
comesback to the samestate (Figure 4(a), blue and green
arrows). These trajectories are numerous,with highly dis-
tinctive paths in terms of ecosystem composition (the
present components)or otherproperties. For example,it is
possible to plot such hysteresis as a function relating the
number of ecosystemcomponentspresentto thenumber of
stepsrequired to reach the states(Figures 4(b) and 4(c)).

Many other properties are available and often quanti-
fiablein thestatespace.It is relevant tousethesetrajectories
tocharacterizethestructuralstability (e.g.,B′ in Figure4(a)),
for example, by assigning it a “depth” defined by the
maximum number of discrete steps required to reach the
stability boundary andultimately leave it (state colors) and
representing the resistance [17]. The state spacegathers as
muchinformation ontransitions asonstates,asit ispossible

A

C

B

D′

D

B′

Figure 2:The full statespace(or markinggraph) of the termite colony model. Thestatespacecomprises109stateslabeledwith apair n/s
wheren isanidentifying numberfor themarkingandsis thenumberofstronglyconnectedcomponents(SCCs) for thebasinordeadlockit
belongsto.The initial state isdisplayedasahexagon(A), deadlocks(states leading toa terminal statewith nosuccessor) aredisplayed as
squares(five in total, of which two are in zonesD andD′, andone (A) is close to the initial state), an exampleof two tipping points is
displayedasaredsegment(C), while otherstatesaredisplayedascircles. Each SCC orbasin ishighlightedusingaseparatecolor (e.g., SCCs
B andB′ aredrawn in orangeandgreen).Theedgesaredirected and labeledwith thenumberof the rule thatwasapplied to performthe
transition (defined in Table2).
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Figure 3:From themergedstatespace(a), it is possibleto drawatentative potential-likesurface(b). In themergedversion (a) of the full
termite statespace (Figure 2), each SCC and basin hasbeen reduced to a single node and redundant paths have beenremoved. Nodes
representingSCCs or basins(i.e., aggregatestates)are noted(s) (circles) and labeledwith the componentspresentin all their states.From
this reduction of the statespace,specificpaths leading to themain ecosystemcollapses (squares), and highlighting the sharptransitions
betweenthem,canbemoreeasily identified.For thepotential surface(b), eachstructural stability (SCC, e.g.,B andB′) hasbeenrepresented
asawellwith awidthcorrespondingto itsnumberofstatesandadepthcorrespondingtothemaximumnumberofstepsforescapingit. The
deadlocks (e.g.,D andD′) arebottomlesswells andare connected toother topological featureswith acontinuous surfaceandsometimes
through tipping points (C) (red arrow). We explain in themain textwhy sucha representation is fallacious, though.
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to analyze which process (interaction) is responsible for
which transition between states or sets of states. For ex-
ample, the ecosystem shifts drastically from stability B′
towarddeadlockD′ throughaTP (Figure 3(a)-C,redarrow).
It ispossibletocomputeasimilarity indexbetweenall pairs
of statesor topological features to estimate the TP magni-
tude.For example,a Jaccard indexbasedonthepresentand

absent componentswould quantify the similarity between
successive states. As an illustration, we computed this
similarity index in amorecomplexwetlandsocioecosystem
modeled in the sameway (Figure 5(a)) [38] and automat-
ically identified TPs suchas the transitions entering dead-
locks n/s0and3that were highly different from thoseseen
previously (Figure 5(b), thetwofirstcolumnsof thematrix).
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Figure 4:Illustration of thehysteresisfoundin the termiteecosystemstatespace(a), highlighting twospecifictrajectories (b). Thestructural
stability displayed is B′ (Figures 2and3), composedof20states(a) labeledwith apair n/swheren is an identifying numberands is the
numberof discretestepsneededtoexit theB′ stability (from 0for statesdefiningtheboundary to3for themaximumnumberof stepsto
reachtheboundary). Theedgesaredirectedandlabeledwith thenumberof therule thatwasapplied toperformthetransition (Table2).One
specific cycling trajectory hasbeenchosen in theB′ stability (a) (blue andgreenarrows), and this hysteresis ishighlighted in theplane
(numberofpresentcomponentsversusdiscretesteps,bleft). A secondtrajectory isdisplayedin thesameplane (bright) tohighlight the fact
that many trajectories in the state spacemayexhibit hysteresis.
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3.Comparisonof theState Spacewith the
Potential Surface

A process-basedmodel such asthe presentmodel of a termite
ecosystemmayprovidesomeinsightsin ecology.In recentyears,
a growing body of studies in ecology has promoted the con-
ceptual view of (socio)ecosystem functioning that we refer to
here as the potential surface (Figure 4(a)). Although it has
sometimesbeencalledbyothernames,theprinciple remainsthe
same:thismetaphorsuggestsconsidering anyecosystemasaball
rolling downontoahypothetical landscapemadeupofasurface
in a higher dimension space [15, 17]. This (hyper)surface
concept is borrowed from physics, where many systemshave
beenshowntochangeaccordingtoapotential parameterizedby
intrinsic (e.g., statevariables) and extrinsic variables (e.g., en-
vironmental conditions) [24, 25]. There is no doubt that this
conceptis aconvenient onefor useinecologytoo[44,46].This
conceptual model is phenomenological, in that it potentially
describespatternsin observationandisnotbasedonknowledge
oftheunderlyingmechanisms.Metaphorsareoftenslipperyand
it remains tobedemonstratedthat thepotential asaconcept is
appropriate to ecosystem dynamics and to environmental
processes(e.g., climatology [21,22,47]) in general.This section
lists five possiblecriticisms of the potential metaphor.

3.1.Vertical Force. One critical assumptionof the potential
analogy concerns the gravitational force that constrains
movements on the surface. For the system to be located

abovea certain elevation assumesthe energy is higher than
below that elevation due to the scalar field in which the
systemis immersed. Does such a force exist in ecosystems?
And if yes, what is the nature of this force? Indeed, if the
potential surface is such an easy-to-handlemetaphor, it is
undoubtedlydueto therestoring torquethat drives theball
along to thepotential surface [15]. In physical systems,any
potential istheorigination of aforceandisdirectly linked to
energy [11, 48]. This force is often gravity but may also be
associated with electrical or chemical potentials. In eco-
logical systems, to our knowledge, no forceor energy has
beenidentifiedoranalyzed,evenwhenliving systemstendto
maintain their activity, for example,byhomeostasis[49]. It
is even harder to imagine what the nature of this force or
these processesmight be, considering that ecosystemsare
simultaneouslyphysical andbiological (and anthropogenic)
objects.

A simple thought experiment might help in under-
standing what is at play in this force, if anything. Take a
simplified ecosystemsuchasvegetation in arid areas. In the
absence of rainfall (the environmental conditions, say
rainfall R), thereisnovegetation(thestatevariable,biomass
B) present,evenon fertile soil. Theabsenceof suchvariables
(B, R) U(0, 0)maybe,andusually is, consideredastablestate
[28], evenwith asystemshowingstochasticnoise. In other
words, the potential surface concept would plot the eco-
systemasaball that has“fallen deepinto” awell [44]. Now,
let uspushthesystemtowardslightly wetterconditions and
theemergenceofvegetation.Howwouldecologiststhink the
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Figure 5:Exampleofamorerealistic socioecosystemanalyzedusingadiscretequalitative model,viewedbyitsmergedstatespace(a) andits
tipping points (b). Thestatespaceof thiswetland socioecosystem(a), a temporarymarshwith pastoralism[38], shouldbereaddownward,
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ecosystemwould behave? Would the system stay in this
(putative stable)statewith very little vegetationandrainfall?
Will it gradually increase the biomass, form vegetation
patterns,andstartstoringasmuchwateraspossible?Or will
it simply revert to thepreviousstate,with novegetationand
no more water?

Thepotential surfaceprovidesone(the?) answer.Due to
the metaphoric gravitational force in the landscape, it is
assumed that the ball representing the ecosystemwill in-
evitably fall down to the stable state (B, R) U(0, 0). This
assumptionthat the vertical dimensionplays a critical role
(and that such a force does exist) remains to be demon-
strated in ecology.This isanecessity,even if mostecologists
today feel that this is thebehavior atplay.Somestudieshave
already examinedecosystemsin semiarid conditions or in
controlled, poor environments [50]. So far, though, to our
knowledge, there has been no definitive demonstration of
attracting or repulsing behavior in the vicinity of stable
states. The truth is that probably no ecologist knows the
answer. The state space, as illustrated in the termite eco-
system(Figures 1and2), indicates whether the systemcan
shift from one state to another, according to the set of
processesdriving the system. In our opinion, there is no
driving force for the ecosystemother than these identified
processes.

3.2.Reversible Isotropic Surface. Similarly, we may wonder
aboutthe inner nature of theother (horizontal) dimensions
of thepotential. In particular, are theecosystemvariablesor
the environmental conditions isotropic? Focusing on the
statevariable (often plotted alongthex-axis), is it aseasyto
leave a stable state (i.e., a well, with central symmetry)
leftwardasit is to leave it rightward? Thisquestionis linked
to the previous limitation and challengesand the possible
attraction and repulsion ofdistinct potential zones,anarea
of critical study in physical systems (e.g., climatology
[21, 47]). For example, let us assumethat desert, savanna,
and forest are alternative stable states (still a matter of
debate); when leaving the savanna states, likely located
betweenthe other two, will it be “easier” for the system to
reach the desert states than the forest states?Theoretically,
the potential assumesperfect symmetry between both di-
rections [17, 44], which our process-basedmodel doesnot
[30].

In other words, the potential surface assumesthere are
isotropic directions and reversible movementson it. More
generally, thereversibility ofeachtrajectory of theecosystem
canbequestioned.Thisobservation remainsvalid whatever
theshapeof thepotential,possiblyallowingfor thehysteresis
alreadyobservedin ecology[16,32].More radically, wemay
wonder whether movement on the potential surface is
possible everywhere. In the case of simplified ecosystems
with only one state variable, it may be assumedthat the
systemcangainor losebiomassequally aseasily. In thecase
ofmorerealistic ecosystems,though,precisely thoseweare
endeavoringtounderstand,it maybethat regainingbiomass
is no longer possible, whatever the predator- or climate-
related causes. In brief, the reversibility of the potential

surface needsto bedemonstrated too. Here again, the state
spaceof the termite ecosystem, the assumedmodel defini-
tion, demonstrateswhetherthesystemmayreachadeadlock
or exhibit irreversible dynamics (e.g., between B and B′,
Figure 2).

3.3. Surface Stability over Time. It is worthy of note that
biologists in the pastused the concept of potential surface
too. The bestknown example is probably the epigenetic(or
fitness) landscapeproposed by Waddington (Figure 6(b))
[51]. This landscapesuggeststhat thephenotypic traits ofan
organism are the result of a combination of genes. The
metaphor waspowerful and hasbeenwidely usedupuntil
now.Yet,agrowingbodyofbiologiststodaybelievesthere is
amajor flawwith this potential surface: it is changing(i.e.,
not frozen). Even when genesare responsible for the traits
examined, it hasbeenobservedthat this landscapeis highly
variable, changing over time in successive experiments
[52–54]. In brief, the potential surface cannot be plotted
once and for all.

We recall a critical assumption behind the potential
concept used in physics: a physical system modeled as a
dynamic systemshouldbe (is) ergodic. Theergodicity of a
system states that it exhibits the samestatistical behavior
when averagedover time, in spaceor in any other system
dimensions (i.e., in its phase space, e.g., [55]). In other
words, a system that evolves over a long period tends to
“forget” its initial state, statistically speaking.Some ecolo-
gists have serious doubts that ecosystems are ergodic
[10, 56, 57]. Conversely, most ecologists think that eco-
systems have history that strongly constrains their fate
[18,58–61].Here again, theecosystemswetalkaboutarenot
simplified as prey-predator systemsas they are sometimes
discussed.Real ecosystemsarethermodynamically openand
havemanycomponentsthataresubject toevolution. Toour
knowledge, this ergodic property has never been demon-
strated in ecology. The statespaceapproach presentedhere
does not assume ecosystem ergodicity in the dynamics
studied (Figure 2), but it is possible toadapt the model for
evolutionary andever-changingdynamics,aperspectiveour
team is already exploring.

3.4. The Punctual Ball and the Thin Surface. As a fruitful
metaphor, the potential surface and its related concepts
simplify reality so as to improve our understanding. It be-
comes embarrassing, however, when such simplifications
providean incorrect ideaof reality. Can anecosystemreally
beconceptualizedasapunctual ball? An ecosystemissucha
complexobject comprising a large number of components
andprocessesthat it is easyto imagine that someparts of it
would indeed follow a potential—its physical part, say—
while another part would not [11,57]. The reason that the
wholesystemshouldexhibita punctual location in thestate
space has to be explored; and why not several locations
simultaneously? In addition, thesystemwould likely exhibit
stochasticbehavior, rather thanshowingthesystemasaball
moving into a cloud of uncertain locations in this space
(Figure 6(c)).
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Additionally, this observationquestionswhether or not
the(hyper)surface of thepotential shouldhaveathickness(a
hypervolume) (Figure 6(c)). In physics, the systemmust
exactly follow the potential in amean-fieldapproximation,
even if noiseoften blurs themeasuresandthe plot [48]. In

ecology, we may reasonably question whether processes
follow meanfieldbehavior, and this is often justified by the
hugenumberof components involved in the system.As in
biology (Figure 6(b)), ecological processesexhibit a high
variance which makessystemsmoreunpredictable andmay
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Figure 6: Examplesof various synthetic representationsof systemdynamics, including a potential-like surface (a) [16], the epigenetic
surface(b) [51], and thedrapeconcept(c) inspired from[32]. Although theserepresentationsofdynamicsystemsappearcomparable,they
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meanthey showno averagebehavior (or that they explore
rare trajectories too). The state space proposes that the
ecosystem indeed follows some trajectories, but the ever-
changingstatecompositions in this spacedenythe uniform
and constant imageof theball (Figures 6(a) and6(b)). The
system inevitably follows the state space, however, as it
contains all possible statesand, according to the processes
involved, it should not leave this computed shape
(Figure 6(c)).

3.5.SurfaceDefinitionandDisturbances. Thedefinitionofthe
potential surfaceitself challengesecologists.How should it be
built? Which variables shouldbeused?Ecosystemcomplexity
suggeststhatmanystatevariables shouldbeused,whereasmost
ecological surfacesbuilt sofar usea single (one-dimensional)
variable (e.g., [29, 44]). Yet, deserts,savannas,and forestsare
often assumedto belong to the samepotential surface. This
simplification is questionable,considering that even savannas
and forests have radically different speciescompositions and
climatic andsoil conditions (e.g., [11,12,62]). Towhat extent
shouldwemergedifferent biomes(broad typesof ecosystems)
into the samepotential? It is predictable that boreal forests
would not belong to “the same” potential surface as tropical
forests,astheyarecontrolled byradically differentconditions,
essentially by temperaturesand rainfall, respectively [63, 64].
There is a clear needto definepotential functions with more
(state) variables.

Oneexamplemayillustrate this fallacy. Empirical studies
ofthe potential surfaceassumethat thesystemspendsmore
time in stable states, and less time in unstable ones. For
example, some ecologists estimate the potential surface
basedonthis central assumptionto identify themultimodal
stabilities ofvegetation[20,44].Therearemanyexamplesof
systemsin which this assumption is revealed to bewrong.
One suchexample is the simplistic pendulum system. In a
pendulumoscillation, the stablestate is at the bottom(the
lowestelevation), while this is also the locationatwhich the
systemhas the greatestspeedand, thus, at which it spends
the shortest resident time. In brief, it is in no way recom-
mendedthat the stableand unstable statesof any systembe
identified onthebasisof thetime it spendsin various states.

Furthermore, environmental conditions supposedly
controlling somedimensions of the potential are not sys-
tematically external to the ecosystem.This issue has long
beendebated in ecology and is basically linked to the or-
ganismicconceptionofecosystems[36,65].Tansleyinitially
proposed the word “ecosystem” to replace the word
“community,” and the debate lasted long about the inner
coherencyof thisobject.When aball falls fromthe towerof
Pisa, gravity isconsideredexternal to theball beingstudied.
In the case of many ecosystems,what does excluding dis-
turbance from thesystemallow? With climate forcing, the
disturbanceappears tobequiteobviously external, spatially
and temporally, but in the caseofa forest fire, an invasive
species,or an intrinsic human pressure, this assumption is
much lessobvious [21,32]. Can webesureno feedbackcan
settlebetweendisturbancesand theecosystemsstudied, asis
usually assumed[14,16]?Theresulting surfacewould likely

differ strongly dependingon the statusof the disturbance.
Construction of the discrete, qualitative ecosystemmodel
presentedheresuggestsincluding all theprocessesatplay in
theecosystem(Tables 1and2,Figure 1), bethey internal or
external, and computing the resulting dynamics. Hence,
there is no need to confer a specific status on external
disturbances.

4.DiscussionandRecommendations
We cannowcomparethe traditional potential fromphysics
commonly and empirically used in ecology (Figure 6(a))
with this potential surfacecomputedonthebasisof thestate
space of a process-basedmodel of a complex ecosystem
(Figure 3(b)). Keeping in mind the limitations listed pre-
viously, thecomparison revealssomestriking observations:

(a) On our computed potential surface, there is no
gravitational force pushing the systemdownward.
Only the (modeled) processesat play arecapableof
moving thesystemfromonestatetothenext, in the
state space. In particular, climbing up the surface
appearsaseasyas falling down (Figure 3(b)). This
metaphoric vertical force now appears
inappropriate.

(b) The potential surface is not isotropic and shows
strongly irreversible paths as interpreted from the
mergedstatespace.When thesystemshifts fromone
structural stability, that is, fromonestablearea (e.g.,
well B, Figure 3(a)) to theneighboringstability (well
B′), anyreturn isforbidden.It isevenpossibletoplot
trajectories and hysteresis within each structural
stability (Figure 4).

(c) Thecomputedpotential surfacehasnoreasonto be
stableover time. Indeed, thestatespace isprovided
here for a specific ecosystem (termite colony)
composition(Figure 1(b)), butanynewarrival in or
departure from the system components, and its
associated processes, would strongly modify the
resulting statespace (Figure 2).

(d) Thepotential surfacehasbeencomputedhereonthe
basis of discrete events, then transformed with an
assumption of continuity between states, and dis-
played in anarbitrary space(Figure 2). Many other
representationsandcoordinates for eachstatecould
have beenused, however, and consequently would
have strongly modified the potential surface repre-
sentation(Figure 3(b)). In particular, consideration
of the thick surface would have disqualified this
potential surface [32], instead of the discrete qual-
itative statespace(Figure 3(a)).

(e) A largenumberof variablesof various natureshave
been used to constrain this state space and its as-
sociatedpotential surface(Figure 1(b)). In addition,
perturbations and evendisturbancesare internal to
the system and contribute strongly to the surface
definition. This is not the case for traditional po-
tentials [17,44].

10 Complexity



For all thesereasons,we think that empirical potentials
appear to be inaccurate approximations of process-based
ecosystemstate spaces.Conversely, the state spaceseemsto
be a convenient substitute for the traditional potential
[18,30]. It hasstill to betestedin contrastedcasestudies to
evaluate its interpreting power [37, 38]. The discreteevent
model family used in computer science and in biology
[31, 41] appears to provide an interesting avenue for un-
derstanding ecosystem dynamics. These process-based
models were developed to understand systemsmade up of
discrete components in interaction. Some of them were
initially dedicated to resource allocation or signaling net-
works[35,40]andothersto linguistic or landscapemodeling
[33, 66,67] andplant growth [34, 68]. Such modelsmaybe
combined with networks representing the constitutive en-
tities (the nodes) and their processes(the edges), for ex-
ample, to model rural landscapes [67] or ecosystems[18].
Another central advantagethey offer is that they allow for
rigorousformalization of thedynamicsstudied,aswell asan
understandingofsystembehavior in all itsdimensions.They

are also intuitive, highly adaptable (e.g., with quantitative
and multivalued versions), and easy to manipulate using
existingsoftware [45]. In addition, suchstatespacesappear
conceptually similar to state-and-transitionmodels devel-
oped to manage rangelands, well known for exhibiting
multiple statesand successionaldynamics [43]. Ultimately,
they provide interpretations of (socio)ecological entities
which, when rigorously formalized, are no longer meta-
phoric [37, 38,56].

There can be no doubt that ecosystems are complex,
despite a few of them remaining simple. Ecosystem pro-
cessesare notoriously noisy and difficult to measure,while
thebiological componentsof ecosystemsoften addastrong
variance to the overall behavior. Despite this challenge,
ecologistsneedtocontinue collecting dataon ecosystemsto
improve theunderstandingof suchsystemsand,ultimately,
their management. But where does ecological complexity
reside? Is it in the ecosystem state or in the ecosystem
dynamics?Ecologistsarecommonly inclined toscrutinizea
snapshotof the ecosystem(the pattern) instead of its long-

Table 1:Node categories,names,abbreviations, anddescriptions of the termite colony ecosystemmodeledusingthediscrete qualitative
model (see Figure 1,adapted from [30]).
Name Initially Family Description Comment
Rp Present Inhabitants Reproductives The queen, the king, the eggs,and the nymphs
Wk Absent Inhabitants Workers All termitesable to work: the larvae, workers, and pseudo-workers
Sd Absent Inhabitants Soldiers The termite soldiers
Te Absent Inhabitants Termitomyces Thefungus cultivated by the termites
Ec Absent Structures Egg chambers All eggchambersplus the royal chamber
Fg Absent Structures Fungal gardens All the gardens in which the fungus is grown
Md Absent Structures Mound Theupper structure of the colony
Wd Absent Resources Wood Thewood stored inside the colony
Ai Absent Resources Air of thenest The air inside the colony
Sl Present Environment Soil The soil around the termite nest
At Present Environment Atmosphere Theair around the termite nest
Ac Present Competitors Ant competitors All the ant speciesin competition with the termites

Table 2: List of the rules for modeling termite ecosystemfunctioning and development.
Rule Comment
(1) Wk+, Te+⟶ Wd−, ai− The workers and the fungi are consuming wood and air
(2) Fg−⟶ Te− The fungi need the fungal gardensin order to survive
(3) Wk+, Sl+⟶ Wd+, Te+,Fg+,
Ec+, Md+

Theworkersare foraging in thesoil for woodandfungus;fromthesoil, theworkersarebuilding the
fungal gardens, the eggchambers, and the mount

(4) Wd−⟶ Wk−, Te− The workers and the fungusneed to eat wood to survive
(5) Rp+, Sl+⟶ Ec+ For the soil, the queenand the king can also build eggrooms
(6) Rp+,Ec+⟶ Wk+ In the eggchambers, the queenand the king are producing eggsthat are becomingworkers
(7) Wk+, Wd+⟶ Sd+,Rp+ Eating wood, the larvae are metamorphosing into soldiers and/ornymphaea
(8) Md+, At+⟶ Ai+ The air of the nest is being refreshed by passingthrough the mound and exchangingwith the

atmosphere
(9) Wk−⟶ Fg−,Sd− The soldiers cannot survive without the workers to feedthem, and the fungal gardensneed

maintenance by the workers
(10) Wk−, Rp−⟶ Ec− The eggchambersneedmaintenance by the workers or the reproductives; otherwise they collapse
(11) Sd+⟶ Ac− The soldiers are killing ant competitors intruding into the colony
(12) Ac+, Sd−⟶ Wk−, Rp− Without the soldiers, the ant competitors are invading the colony andkilling theworkers and the

reproductives
(13) Ai−⟶ Rp−,Wk−, Te− The reproductives, the workers, and the fungusneed to breathethe air of the nest to survive
Theconditions of application, realizations, anddetailed explanationsare givenfor each rule. Therule arrows indicate the transformation (rewriting) of the
network at the next step [30]. Discrete systemsare used to exhaustively characterize the dynamics of an integrated ecosystem(Methods in Ecology and
Evolution, 00:1–13 [30]).
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term (process) dynamics.For example,it is inappropriate to
studytraditional ecosystempotential onthebasisof isolated
states(Figure 6) rather than thetrajectoriesconnectingthem
(Figure 4). Ecosystems are historical objects experiencing
abrupt changes with probable nonergodic behaviors
[18, 55,56]. Most ecosystemstudies have been performed
over relatively short timescales, typically over one or two
humangenerations.We still knowvery little aboutthe long-
termbehavior ofecosystems,i.e., overseveral generationsof
the slowest component, despite increasing efforts in his-
torical ecology and paleoecology (e.g., [69, 70]). The usual
variables under long-term study often concern vegetation
and climate, but rarely fauna, soils, and/or human com-
ponents. An understanding of long-term ecosystem be-
haviors is now becoming an imperative, with realistic
modeling asa corollary.

At this stage, a decisive recommendation is not to
neglect theprocessoffitting themodel to observations. To
date, it has been rare for traditional potentials to fit ob-
servedecosystems[27,44]andhasmainly involved pattern
andfragmenteddatasets.Toourknowledge, ithasnotonce
been the casewith process and ecosystemdynamics [32].
Most of the time, the model is displayed to interpret a
posteriori observations,andnot strictly fittedto them.This
critical preliminary step should be performedwith more
variables, on longer trends and with finer models, a
commentwhich is true for discrete eventmodelstoo.Data
collection in ecology is particularly challenging, consid-
ering thecostof surveying acompleteecosystem(i.e., most
components) andconsidering thenumberof components,
but substitutescanbefound to start this programofwork.
Somechemostatandcontrolled experimentsmayallow for
high resolution and long-termmeasurements[71], while
some large scale ecosystemshave begun to have rich da-
tabasestoo [27]. Thereappearstoustobeanurgentneedto
start calibrating potential-like and discrete-event models
on suchcomplexdataand to test their related hypotheses.
Togeneralize thepotential concept to various contrasting
ecosystems,it will benecessary to confirm its power and
usefulness.

These recommendations may all be summarized as a
triangle of improvements that feed into the three main
componentsof any research themeof complexity, namely,
data,model,andconceptresearch. In between,therearefits,
ideas,and tools that enablecontinuous testing of emerging
concepts such as state spaces and potential surfaces. At
present,somesidesof this triangle appeartobemissing,with
further studiesbeingrequired toproduceasatisfyingtheory
of ecosystem.As shown above, potential-like surfacesmay
not be the most appropriate concepts for describing and
understanding complexecosystembehaviors anddynamics.
Even in caseswhere the potential concept proved appro-
priate, it wouldbe fruitful andheuristic to search for some
additional views [32]. For example,we recently proposed
also looking for linguistic principles in living systemsand
ecosystems[72].

Simultaneously seekingnewmathematical tools is also
an imperative; suchmodels include theseunderused qual-
itative discrete event models [30]. Other tools have been

proposedin thepast,anditwould beashametoignorethem
or fail to fully acknowledgethem.For example,Thoms̓work
showsrich butunwieldyalgebraspecifically forpotentials in
anyfield[25]. Economic andethological studieshavealready
tried, unsuccessfully, to use these tools. In addition, we
believe it is crucial to develop possibilistic models for ex-
haustive characterization of ecosystemtrajectories, instead
of probabilistic models focusing on a few dominant tra-
jectories only.

In conclusion, we would like to warn the ecologist
community of the hazardsof drawing an analogy between
physical and ecological systems.Thehistory of ecologyhas
already shown how this analogy once sent the community
downpotentially erroneousand/oruselesspathways [11]. It
is often fruitful to borrow concepts from other scientific
fields, but they need to be tailored to the questions under
examination at best and, at worst, they could sendus off
down a slippery, dangerousslope.
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